Lente positiva ou convergente, ou simplesmente "lente convexa". Observe que os feixes de luz paralelos (à esquerda), ao atravessarem a lente, unem-se à direita no chamado "ponto focal". |
Lente negativa ou divergente, ou simplesmente "lente côncava". Neste caso os feixes de luz paralelos (à esquerda), ao atravessarem a lente, espalham-se à direita, sem a ocorrência do "ponto focal". |
Representação pitagórica da mônada |
Ilustração japonesa mostrando um indivíduo ajoelhado à esquerda, fazendo contas em um tabuleiro quadriculado contendo numerais de varas. |
Duas folhas originais do manuscrito hindu Arthashastra |
[A soma] de dois positivos é positiva, de dois negativos, negativa; de um positivo e um negativo [a soma] é sua diferença; se forem iguais, a soma é zero. A soma de um negativo e zero é negativa, de um positivo e zero, positiva, e de dois zeros, zero.
[Se] um menor [positivo] for subtraído de outro maior positivo, [o resultado] é positivo; [se] um menor negativo de outro maior negativo, [o resultado] é negativo; [se] um maior de outro menor, sua diferença será revertida – negativo torna-se positivo e positivo torna-se negativo.
[...]
O produto de um positivo e um negativo é negativo, de dois negativos, positivo; e de positivos, positivo; o produto de zero e um negativo, de zero e um positivo, ou de dois zeros, é zero. Um positivo dividido por um positivo e negativo dividido por um negativo é positivo; zero dividido por zero é zero; um positivo dividido por um negativo é negativo; um negativo dividido por um positivo é negativo.
A única falha é a afirmativa de que zero dividido por zero é zero, um assunto já tratado no capítulo sobre operações aritméticas com frações, no segundo livro desta série; as demais assertivas de Brahmagupta estão todas corretas.
Selo soviético comemorativo aos 1.200 anos de nascimento do matemático Al-Khwarizmi, lançado em 1983. |
"Esse carinho pela ciência... essa afabilidade e condescendência que ele [o califa] mostra aos sábios... encorajou-me a compor uma pequena obra de cálculo por restauração [al-jabr] e balanceamento [muqabala]... já que os homens constantemente o exigem em casos de herança, legados, partições, processos judiciais e comércio."
O termo al-jabr deu origem nada menos que à palavra portuguesa álgebra. Nesta obra, o autor reconhece que suas idéias são baseadas no trabalho de Brahmagupta e, portanto, ele estava familiarizado com os números negativos. Porém, seus modelos geométricos, todos eles baseados nos trabalhos de matemáticos gregos, o convenceram de que os resultados negativos não tinham sentido, questionando: "como se poderia obter um quadrado negativo"? Curiosamente, em outro tratado de sua autoria em legislação sobre heranças, Al-Khwarizmi representa quantidades negativas como débitos. A primeira ocorrência do uso explícito de números negativos em textos do mundo islâmico medieval é atribuído ao matemático e astrônomo Abu al-Wafa (940 d.C. a 998 d.C.), em sua obra: Kitab fi ma yahtaj ilayh al-kuttab wa l-ummal min ilm al-hisab, ou "Livro daquilo que é necessário da ciência aritmética para escribas e negociantes".
Representação alegórica de Abu al-Wafa |
Nela, al-Wafa apresenta uma regra geral e demonstra um caso especial onde a subtração de 5 por 3 fornece um 'débito' de 2. Em seguida, multiplica o resultado por 10 para obter um novo 'débito' de 20, que adicionado a uma 'fortuna' de 35 resulta 15. Aliás, o famoso livro Almagesto, um influente tratado medieval de astronomia, escrito pelo matemático grego Ptolomeu, foi traduzido para o árabe por al-Wafa. Por fim, é digno de menção outro matemático e astrônomo árabe: Al-Samawal (1.130 d.C. a 1.180 d.C.), que em sua obra Al-bahir fil-jabr, ou "O brilhante em álgebra", estabelece algumas regras de sinais:
Se subtrairmos um número positivo de uma 'potência vazia', resulta no mesmo número, porém negativo; e se subtrairmos um número negativo de uma 'potência vazia', resulta no mesmo número, porém positivo; o produto de um número negativo por um número positivo é negativo, e por um número negativo é positivo.
A justificativa para a regra de sinais da multiplicação, quando havia alguma, era sempre de caráter geométrico. Porém, a primeira prova no ocidente baseada na lei distributiva da aritmética para a regra de sinais aparece no trabalho do algebrista italiano maestro Dardi de Pisa, por volta de 1.380 em sua obra Aliabraa argibra, cuja prova é reproduzida a seguir. Dado um retângulo medindo 20 de largura por 10 de altura, cuja área é igual a 200:
Reduz-se suas medidas respectivamente de 3 unidades na largura e 2 unidades na altura, obtendo-se:
Pergunta: qual a nova área (em azul) após a redução nas medidas do retângulo laranja? Ora, como sabemos que a área de um retângulo é a multiplicação de sua base (ou largura) por sua altura, temos:
$$ Area=largura\times altura=17\times 8=136 $$
Mas, e se quiséssemos obter a área a partir das medidas originais subtraídas? Não há dúvida de que uma área igual a 136 tem de ser alcançada. Assim:
$$ Area=largura\times altura=\left ( 20-3 \right )\times \left ( 10-2 \right )=136 $$
Para que a multiplicação de (20 – 3) por (10 – 2) resulte 136, aplica-se a lei distributiva da aritmética, em que todos os termos multiplicam-se uns aos outros, somando-se os resultados parciais. Logo:
$$ \left ( 20-3 \right )\times \left ( 10-2 \right )=\left ( 20\times 10 \right )+\left ( 20\times -2 \right )+\left ( -3\times 10 \right )+\left ( -3\times -2 \right ) $$
As multiplicações à direita da igualdade devem, somadas, valer 136:
$$ \left ( 20\times 10 \right )+\left ( 20\times -2 \right )+\left ( -3\times 10 \right )+\left ( -3\times -2 \right )=136 $$
Bom, agora com o auxílio da geometria, temos a seguinte situação: o primeiro termo da multiplicação (20 × 10) corresponde à área original do retângulo laranja.
Os dois termos são positivos e o resultado da multiplicação também é positivo:
$$ \left ( 20\times 10 \right )=200 $$
Daí deriva a primeira regra de sinais da multiplicação:
Um número positivo multiplicado por outro número positivo resulta em um positivo, ou como aprendemos na escola: mais com mais dá mais.
O segundo termo (20 × –2) corresponde à faixa laranja horizontal, que deve ser subtraída da área original:
Logo, seu resultado deve ser negativo:
$$ \left ( 20\times -2 \right )=-40 $$
Neste caso, o primeiro termo é positivo e o segundo termo, negativo. O resultado da multiplicação tem de ser negativo para que a área da faixa horizontal laranja seja descontada do retângulo original; daí surge a segunda regra de sinais da multiplicação:
Um número positivo multiplicado por outro número negativo resulta em um negativo, ou como aprendemos na escola: mais com menos dá menos.
O terceiro termo (–3 × 10) corresponde à faixa laranja vertical, que também deve ser subtraída da área original:
Logo, seu resultado também deve ser negativo:
$$ \left ( -3\times 10 \right )=-30 $$
Neste caso, o primeiro termo é negativo e o segundo termo, positivo. O resultado da multiplicação tem de ser negativo para que a área da faixa vertical laranja seja descontada do retângulo original; daí surge a terceira regra de sinais da multiplicação:
Um número negativo multiplicado por outro número positivo resulta em um negativo, ou como aprendemos na escola: menos com mais dá menos.
Bom, até aqui temos o seguinte resultado parcial para o cálculo da área do retângulo azul:
$$ 200-40-30=200-70=130 $$
Opa! Temos um problema: descontadas as áreas das faixas laranja horizontal e vertical, a área restante é menor em 6 unidades que a área do retângulo azul. Mas temos ainda uma última multiplicação a ser analisada:
$$ \left ( -3\times -2 \right ) $$
Se temos que somar 6 unidades para obter o valor correto da área do retângulo azul (de 130 para 136), o resultado dessa multiplicação tem de ser positivo:
$$ \left ( -3\times -2 \right )=6 $$
Essa área corresponde à intersecção entre as duas faixas laranja, a horizontal e a vertical, destacada abaixo em verde:
Como esse pedaço de área verde é descontado duas vezes nos cálculos parciais (uma vez com a faixa horizontal e outra com a faixa vertical), faz-se necessário acrescentar esse valor para que o cálculo da área do retângulo azul resulte correto. Chegamos assim à quarta e última regra de sinais da multiplicação:
Um número negativo multiplicado por outro número negativo resulta em um positivo, ou como aprendemos na escola: menos com menos dá mais.
A regra de sinais da multiplicação deriva da constatação geométrica do cálculo de áreas e a lei distributiva da aritmética é a forma matemática de demonstrar sua validade. Seja como for, os números negativos prosseguem em sua árdua marcha rumo ao reconhecimento nos caminhos nem sempre suaves da matemática e chegam finalmente à Europa medieval. Lá, são apresentados a banqueiros e comerciantes por ninguém menos que Fibonacci; a seção do Liber Abaci que trata das subtrações recebe o título: Da subtração de números menores por números maiores. Porém, é na segunda parte de seu manuscrito que o italiano lida com bens e dinheiro, reforçando um simbolismo para transações econômicas com os números negativos, particularmente a noção de lucros ou ganhos em oposição a perdas ou contração de débitos na forma de inúmeros problemas descritivos, como este:
Três homens tinham libras esterlinas, não sei quantas, das quais a metade pertencia ao primeiro, um terço ao segundo e um sexto ao terceiro; como eles queriam mantê-las em um lugar seguro, cada um deles tomou das libras alguma quantia, e do montante que o primeiro tomou pôs em comum a metade, e do que o segundo tomou, pôs em comum uma terça parte, e do que o terceiro tomou, colocou em comum uma sexta parte, e do que eles puseram em comum cada um recebeu uma terça parte, e, assim, cada um teve sua porção.
Fibonacci encontra a seguinte solução para o resgate do montante entre três os homens:
• Primeiro: 326 libras;
• Segundo: 174 libras;
• Terceiro: −30 libras;
O terceiro homem, diz ele, não recebe nada do montante compartilhado, ao contrário, coloca mais 30 libras de seu próprio bolso: havia 470 libras no total e quando eles quiseram mantê-las 'em um local seguro', o terceiro homem adicionou 30 libras, o primeiro homem tomou 326 libras e o segundo tomou 174 libras. Observe que ao lidar com dinheiro, as quantidades negativas assumem um significado simples entre dar e receber, ou entre créditos e débitos assumidos. Esta situação perdura inalterada desde o lançamento do Liber Abaci em 1.202, quando em plena Renascença o matemático e frei franciscano Luca Pacioli publica em 1.494 o seu Summa de arithmetica geometria. Nesta obra, quando um resultado é negativo ele é descrito como um débito; a exceção fica por conta de um problema que Pacioli denomina de belíssimo caso: neste exemplo, pede-se para dividir 10 em duas partes cuja diferença dos quadrados das partes seja igual a 200. A resposta para esse problema é:
$$ 10=15-5 $$
De fato, a diferença dos quadrados das partes é igual a 200:
$$ \left ( 15 \right )^{2}-\left ( 5 \right )^{2}=225-25=200 $$
Mas ainda assim não temos um número negativo de fato; o que se vê nesta conta é a subtração de um número maior por outro menor. Finalmente, encontramos nesta obra a primeira citação da regra de sinais do modo formal como é ensinada atualmente na escola.
Outro matemático que lidou com números negativos foi o italiano Girolamo Cardano em sua obra Ars Magna, de 1.545. Ele é o primeiro matemático a oferecer uma argumentação satisfatória para soluções negativas a problemas com equações lineares (semelhantes à equação de Diofanto de Alexandria) e o primeiro a aceitar raízes quadradas de números negativos. Chama os números positivos de numeri ueri (números reais) e os números negativos de numeri ficti (números fictícios), afirmando: “para tal, chamamos aquele como um débito ou negativo”, porém não faz muito mais pelos negativos, ignorando-os sistematicamente.
Girolamo Cardano |
O dote da esposa de Francisco vale 100 aurei [moedas de ouro] a mais do que a própria propriedade de Francisco, e o quadrado do dote é 400 mais que o quadrado de sua propriedade. Encontre o dote e a propriedade.
O problema reduz-se a duas equações:
$$ \blacksquare =\square +100 $$
$$ \blacksquare^{2} =\square^{2} +400 $$
O valor do dote da esposa de Francisco é representado pela cartela preta e o valor da propriedade pela cartela branca. Substituindo o valor da cartela preta da primeira equação na cartela preta da segunda equação, temos:
$$ \left ( \square +100 \right )^{2}=\square ^{2}+400 $$
Desenvolvendo, vem:
$$ \left ( \square +100 \right )\times \left (\square +100 \right )=\square ^{2}+400 $$
$$ \square ^{2}+100\square +100\square +100^{2}=\square ^{2}+400 $$
$$ \square ^{2}+200\square +10.000=\square ^{2}+400 $$
Simplificando:
$$ 200\square +10.000=400 $$
$$ 200\square +10.000-10.000=400-10.000 $$
$$ 200\square=-9.600 $$
Resultando em:
$$ \frac{200}{200}\square =\frac{-9.600}{200} $$
$$ \square =-48 $$
Ou seja, a propriedade de Francisco valeria −48 aurei, mas por sorte o valor do dote de sua esposa vale:
$$ \blacksquare =\square +100=-48+100 $$
$$ \blacksquare =+52 $$
Alguns anos antes de sua morte, Cardano publica em 1.570 o tratado De Aliza Regulae, cujo particular interesse é a refutação que faz para a regra de sinais para a multiplicação e a divisão geralmente aceita pelos algebristas em sua época. Usando o mesmo exemplo do maestro Dardi de Pisa, ele conclui o contrário deste: a de que menos com menos resultar mais seria tão 'verdadeiro' quanto dizer que mais com mais resultaria menos.
Texto de Cardano refutando a regra de sinais, no De Aliza Regulae. |
$$ 100-\left ( 10\times 2 \right )-\left ( 10\times 2 \right )+\left ( 2\times 2 \right )=64 $$
A aplicação da lei distributiva acima é semelhante àquela adotada por maestro Dardi em sua prova. Entretanto, Cardano argumenta que o +4 não é o resultado da multiplicação de −2 por −2, mas uma área que deve ser novamente adicionada porque subtraímos o pequeno quadrado duas vezes do cálculo. Ele faz referência à proposição 7 do Livro II do Elementos de Euclides, reproduzida abaixo:
Se um segmento AB é dividido em dois por um ponto C, então o quadrado sobre o lado AB mais o quadrado sobre o lado CB é igual a duas vezes o retângulo de lados AB e CB mais o quadrado sobre o lado AC.
O resultado geométrico da proposição 7 do grego é muito semelhante ao desenho do matemático italiano:
Após referenciar Euclides, como para embasar sua linha de raciocínio, Cardano conclui: “E, portanto, está aberto o erro comumente asseverado de que menos vezes menos produzirá mais, para que de fato não seja mais correto afirmar que menos vezes menos produza mais, do que mais vezes mais produziria menos”. Um matemático importante para a história dos números negativos foi o inglês John Wallis: credita-se a ele a criação da reta numérica dos números inteiros, em sua obra Treatise on Algebra, escrito em inglês em 1.685, e que atualmente representamos por uma linha reta com o zero ao centro, os números positivos à direita da reta e os negativos à esquerda.
Reta numérica apresentada por John Wallis em sua obra Treatise on Algebra, de 1.685 |
No entanto, não é essa suposição (de quantidades negativas) nem inútil nem absurda quando corretamente compreendida. Porém, para a notação algébrica pura, importa uma quantidade menor que nada: entretanto, quando se trata de uma aplicação física, ela denota como real uma quantidade como se o sinal fosse +, mas para ser interpretado em sentido contrário. Como por exemplo: um homem que tenha avançado ou andado para frente (de A para B) 5 metros; e depois recuado (de B para C) 2 metros; se for perguntado, quanto tinha avançado (em toda a marcha) estando em C? Encontro... que ele avançou 3 metros. Mas, se tendo avançado 5 metros para B, ele retrocede 8 metros para D; então, se for perguntado, quanto avançou até D ou quanto teria avançado quando ele estava em A? Encontro −3 metros... ou seja, ele avançou 3 metros menos que nada... mas o que teríamos dito (em linguagem ordinária) é que ele retrocedeu 3 metros; ou que ele quer 3 metros a partir de onde está para avançar até onde estava em A.
John Wallis |
$$ \frac{1}{\blacksquare } $$
Se no denominador a cartela preta for substituída por um número positivo muito grande, a fração se tornará zero. Ao contrário, se o denominador for substituído por zero, a fração resultará infinito. Agora, passando do zero, chegamos aos números negativos no denominador da fração (lembre-se da reta numérica). Avançando a linha de raciocínio, se números divididos por zero resultam infinito, então se formos além desse valor, ou seja, se dividirmos por números negativos, a fração resultará em valores maiores que o infinito. Ainda que tenhamos de compreender estas conclusões surpreendentes dentro do contexto em que são colocadas, a afirmação (e, portanto, o escorregão) de Wallis com os números negativos é incontestável, pois afirma que a razão de um número positivo por um negativo como sendo rationem plusquam infinitam (uma razão maior que infinito).
Texto onde Wallis afirma que um número positivo dividido por outro negativo gera um valor maior que infinito, no Arithmetica Infinitorum. |
Outro matemático, contemporâneo de Wallis, que não se livrou de tomar um escorregão dos números negativos foi o francês Antoine Arnauld.
Antoine Arnauld |
Gottfried Leibniz |
Resposta de Leibniz a Arnauld no Acta Eruditorum, de 1.712. |
Quantidades são tanto Afirmativas, ou maiores que nada, quanto Negativas, ou menores que nada. Desse modo, nos afazeres humanos, posses ou estoque podem ser chamados bens afirmativos, e os débitos de negativos. Assim também no movimento local, progressão será chamada movimento afirmativo e regressão de movimento, negativo; porque o primeiro aumenta e o segundo diminui o comprimento do caminho percorrido. E ainda assim do mesmo modo na geometria, se uma linha desenhada em certo sentido for contada como afirmativa, então uma linha desenhada no sentido contrário será tomada como negativa.
Isaac Newton |
Não é nossa intenção seguir os primeiros algebristas através de seus diferentes usos dos números negativos. Essas criações da álgebra retinham sua existência, diante da óbvia deficiência da explicação racional que caracterizava cada esforço de sua teoria.
Augustus De Morgan |